

Aufgabe 1: Grundlagen der Differentialrechnung

(12 Punkte)

a)	Die Dan	/3P	
	R	F	
		$\Box f'(2) = -4.$	
		f'(2) = -3.	
		$\Box f(2) = -4.$	
		f(2) = -3.	

b)	Die	Die Funktion $f(x) = \sqrt{x^2 + 1}$				
	R	F				
			hat die Ableitungsfunktion $f'(x) = \frac{x}{\sqrt{x^2+1}}$.			
	0		ist auf ganz ℝ monoton wachsend.			
	ū		hat eine horizontale Tangente bei $x=0$.			
	ū		hat bei $x = 0$ ein globales Minimum.			

www.unitutor.ch Seite 1 von 17

Aufgabe 1: Fortsetzung

c)	Die Funktion				
			$f(x) = \begin{cases} 2 - x^2, & x \le 0 \\ -2x + 2, & x > 0 \end{cases}$		
	R	F			
	۵		ist stetig auf R.		
	а		ist differenzierbar auf R.		
	□ □ hat ein		hat ein globales Maximum bei $x = 0$.		
			hat keine Nullstellen.		

d)	Sei	/3P	
	R	F	
		\Box f hat bei $x = -1$ eine konvex-konkav Wendestelle.	
		\Box f' hat an der Stelle $x = -1$ ein Maximum.	
		\Box f hat an der Stelle $x = -1$ einen Terrassenpunkt.	
		☐ f hat zwei Extremstellen.	

www.unitutor.ch Seite 2 von 17

Aufgabe 2: Untersuchung von Funktionen

(16 Punkte)

Gegeben ist die Funktion

$$f(x) = (1-x)e^x$$

a) Bestimmen Sie die Nullstellen von f.

/2P

- b) Bestimmen Sie den Schnittpunkt des Graphen von f mit der y-Achse.
- /2P

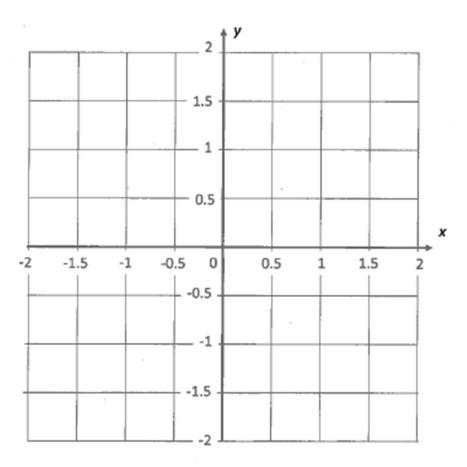
- c) Bestimmen Sie die Extrempunkte (also x- und y-Koordinate) von f. Zeigen Sie, ob es sich dabei um ein Minimum oder ein Maximum handelt.
- /4P

Aufgabe 2: Fortsetzung

d) Bestimmen Sie die Wendepunkte (also x- und y-Koordinate) von f. Zeigen Sie, ob es sich dabei um einen konkav-konvex oder konvexkonkav Wendepunkt handelt.

/4P

www.unitutor.ch Seite 4 von 17



Aufgabe 2: Fortsetzung

 Zeichnen Sie alle unter Teilaufgaben a-d) für die Funktion f berechneten Punkte im unten stehenden Koordinatensystem ein, beschriften Sie diese sinnvoll und skizzieren Sie danach den Graphen von f.

Tipp: Der Graph strebt für sehr grosse x-Werte gegen minus unendlich und für sehr kleine x-Werte gegen 0.

/4P

www.unitutor.ch Seite 5 von 17

Aufgabe 3: Anwendung der Differentialrechnung auf ökonomische Probleme (1) (12 Punkte)

Die Preis-Absatz-Funktion eines Gutes ist gegeben durch die Gleichung:

$$p(x) = 50 - 0.025x$$

a) Bestimmen Sie die Elastizität der Nachfrage bezüglich des Preises.

/4P

www.unitutor.ch Seite 6 von 17

Aufgabe 3: Fortsetzung

b) Bei welchem Preis bewirkt eine Preissenkung von 1% eine Nachfragezunahme ungefähr von 1.5%?

/4P

Tipp: Verwenden Sie $\varepsilon_{x,p}=\frac{2p}{2p-100}$, wenn Sie Teilaufgabe a) nicht lösen konnten. Dann gibt es für a) aber keine Punkte.

c) Bestimmen Sie den Preis, welcher den Erlös maximiert.

/4P

Aufgabe 4: Anwendung der Differentialrechnung auf ökonomische Probleme (2) (14 Punkte)

Bestimmen Sie die Gleichung der kubischen Kostenfunktion, welche folgende Eigenschaften aufweist:

/ 14 P

- Die Fixkosten betragen 2 GE.
- Die Schwelle des Ertragsgesetzes liegt bei $x_s = 6 ME$.
- Das Betriebsoptimum liegt bei $x_0=10~ME$
- Die Grenzkosten bei einer Menge von $x_s = 6 ME$ betragen 0.12 GE/ME.

www.unitutor.ch Seite 8 von 17

Aufgabe 4: Fortsetzung

www.unitutor.ch Seite 9 von 17

Aufgabe 5: Funktionen mehrerer Variablen

(12 Punkte)

Eine Unternehmung produziert zwei Produkte X und Y. Die monatlichen Kosten (in CHF) für die Produktion von x Einheiten des Produktes X und y Einheiten des Produktes Y sind gegeben durch:

$$K(x,y) = 500 + 2x + 4y + 0.002x^2 + 0.002xy + 0.001y^2$$

Produkt X lässt sich für 6 CHF je Einheit am Markt absetzen, Produkt Y für 7 CHF je Einheit.

a) Stellen Sie die monatliche Gewinnfunktion G(x, y) der Unternehmung auf. 2P

www.unitutor.ch Seite 10 von 17

Aufgabe 5: Fortsetzung

 b) Geben Sie für die Gewinnfunktion alle partiellen Ableitungen erster und zweiter Ordnung an.

_/4P

Tipp: Verwenden Sie $G(x,y) = -0.001x^2 + 3x - 0.002xy + 4y - 0.002y^2 - 1000$, falls Sie Teilaufgabe a) nicht oder nur teilweise lösen konnten. Dann gibt es für a) aber keine Punkte.

$$G_x =$$

$$G_{y} =$$

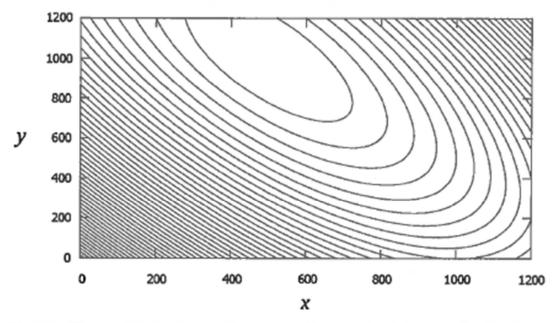
$$G_{xx} =$$

$$G_{xy} =$$

$$G_{yy} =$$

www.unitutor.ch Seite 11 von 17

Aufgabe 5: Fortsetzung


c) Bestimmen Sie die gewinnmaximierenden monatlichen Produktionsmengen <u>und</u> zeigen Sie mittels der partiellen Ableitungen zweiter Ordnung, dass tatsächlich ein Gewinnmaximum vorliegt.

www.unitutor.ch Seite 12 von 17

Aufgabe 5: Fortsetzung

d) Das folgende Diagramm zeigt die Niveaulinien der monatlichen Gewinnfunktion.

Nehmen Sie an, dass die Unternehmung aus Kapazitätsgründen maximal 200 Einheiten des Produktes Y pro Monat herstellen. Bestimmen Sie für diesen Fall grafisch die ungefähre gewinnmaximierende Menge des Produktes X.

/2P

www.unitutor.ch Seite 13 von 17

Aufgabe 6: Grundlagen der Integralrechnung (1)

 $\Box e^{3x}$

(12 Punkte)

a) Folgende Funktionen lösen die Differentialgleichung $f'(x) = -3 \cdot f(x)$ $R \quad F$ $\Box \quad \Box \quad \frac{1}{e^{2x}}$ $\Box \quad \Box \quad e^{-3(x-2)}$ $\Box \quad \Box \quad -e^{3x}$

Für jede beliebige Funktion g gilt:

R
F $\Box \qquad \int_{-3}^{1} g(x) dx = \int_{3}^{1} g(x) dx$ $\Box \qquad \int_{-3}^{3} g(x) dx = \int_{-3}^{-1} g(x) dx + \int_{-1}^{3} g(x) dx$ $\Box \qquad \int_{3}^{1} g(x) dx = -\int_{1}^{3} g(x) dx$ $\Box \qquad \int_{3}^{3} g(x) dx = -\int_{-1}^{1} g(x) dx$

www.unitutor.ch Seite 14 von 17

Aufgabe 6: Fortsetzung

c)	Geg	eben ist	die Funktion	/3F		
		$F(x) = \ln(15 + 5x) + 12$				
	lst i	F eine Sta	ammfunktion der unten aufgeführten Funktion f ?			
	R	F				
			$f(x) = \frac{1}{15 + 5x}$			
	0		$f(x) = \frac{1}{3+x} + 12$			
			$f(x) = \frac{1}{3+x}$			
			$f(x) = \frac{1}{15 + 5x} + 12x$			

	d)	Das bestimmte Integral						
			$\int_{0}^{1} \frac{3}{4} \cdot x^{2} + \frac{1}{4} \cdot e^{x} dx =$					
		hat d	len Wert:					
		R	F					
		0		$\frac{x^3}{4} + \frac{1}{4} \cdot e^x$				
-				$\frac{e}{4}$				
ĺ				$\frac{1}{4} + \frac{e}{4}$				
		٥	0	$1+\frac{e}{4}$	T.			

Aufgabe 7: Grundlagen der Integralrechnung (2)

(12 Punkte)

a) Gegeben ist die Nachfragefunktion:

$$p_N(x) = -0.25x + 100$$

Die Angebotsfunktion ist gegeben mit:

$$p_A(x) = 0.5x + 10$$
.

Wieviel beträgt die Konsumenten- und die Produzentenrente im Marktgleichgewicht?

www.unitutor.ch Seite 16 von 17

Aufgabe 7: Fortsetzung

(Achtung: Der Rechenweg, insbesondere das Finden der Stammfunktionen und deren Auswertungen müssen dokumentiert und nachvollziehbar sein.)

ENDE DER PRÜFUNG

www.unitutor.ch Seite 17 von 17